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Abstract. Development in interior point methods has suggested various solution trajectories, also
called central paths, for linear programming. In this paper we define a new central path through a
log-exponential perturbation to the complementarity equation in the Karush-Kuhn-Tucker system.
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1. Introduction

The development of interior point methods for linear programming has caught
great attention among researchers in optimization in the last two decades. Interior
point methods are not only computationally competitive, but also motivational in
many new directions in theoretical research. For instance, the notion of central path
plays a significant role in interior point methods for linear programming (LP) (e.g.,
see Ye, 1997). Let

P = min{cT x | Ax = b, x � 0}, D = {max bT y | s = c − AT y, s � 0}
be the pair of standard linear programming problems, where b, y ∈ Rm, c, x, s ∈
Rn, A ∈ Rm×n, and “T " represents the transpose. The central path refers to the
primal-dual solution set {(x(t), y(t), s(t)) | t > 0} to the following Karush-Kuhn-
Tucker (KKT) system


Ax = b

AT y + s = c

x ◦ s = te, x > 0, s > 0

,

where t is a parameter, e is the vector of ones and x ◦ s is the vector Hadamard
product: x ◦ s = [xisi]n1. Mainstream interior point methods such as the primal-
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dual path-following methods find a sequence of approximate solutions to the above
system as t ↓ 0, starting from some approximate solution with t = t0.

In this paper we consider a different central path and study its mathematical
properties. A new method for LP is proposed based on this central path. Rather
than the standard pair of LP, the new central path is based on the Karmarkar pair of
linear programming. Namely, let

F ′
P (µ) = {x′ ∈ Rn+1 | [A,−b]x′ = 0, eT[n+1]x

′ = 1, x′ � 0},
where x′ ∈ Rn+1 and e[n+1] is the vector of ones in Rn+1. Then the primal problem
is

min
{
cT x′

[n] − µx′
n+1 | x′ ∈ F ′

P (µ)
}
. (ALP(µ))

The dual of (ALP)(µ) is the following problem

max
{
y′
m+1 | (y′, s′) ∈ F ′

D(µ)
}
, (ALD(µ))

where

F ′
D(µ) =

{
(y′, s′) ∈ Rm+1 × Rn+1 | AT y′

[m] + y′
m+1e + s[n] = c,

bT y′[m] + y′
m+1 + sn+1 = µ, s � 0

}

and

y′ =
[
y′

[m]
y′
m+1

]
, y′

[m] ∈ Rm and y′
m+1 ∈ R.

It should be noted that the dual problem (ALD)(µ) can also be written as the
following min-max problem

min
{−y′

m+1 | − y′
m+1 = max[AT y′

[m] − c, bT y′
[m] − µ]} . (1)

It is well known that the standard form and the Karmarkar form of LP are equiva-
lent in the following sense.

PROPOSITION 1. Assume that the feasible sets of P and D are bounded and both
have nonempty relative interiors. If x∗ is a solution to (LP), then (x∗, 1)/(1+eT x∗)
is a solution to (ALP)(µ∗), where µ∗ is the optimal value of (LP). If x̂′ is a solution
to (ALP)(µ∗), then x̂′

n+1 �= 0 and x̂′
[n]/x̂

′
n+1 is a solution to (LP).

If µ∗ is unknown, then an auxiliary procedure can be designed to find µ∗ in
practice. Since the detail is irrelevant to our analysis below, we simply assume
µ = µ∗ in the sequel. We also make the blanket assumption that both P and D
have bounded feasible sets with nonempty relative interiors in view of Proposition
1.

The solution set of (ALP)(µ) and (ALD)(µ), denoted by F∗(µ), is defined by

F∗(µ) = {
(x′, y′, s′) ∈ F ′

P (µ) × F ′
D(µ) | s′

ix
′
i = 0, i = 1, . . . , n + 1

}
.
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Let us define a new central path as

Ct =
{
(x′, y′, s′) ∈ F ′

P (µ) × F ′
D(µ) | t log x′

i + s′
i = 0, x′

i > 0,
i = 1, . . . , n + 1, t > 0

}
,

or by using vector notation,

Ct = {
(x′, y′, s′) ∈ F ′

P (µ) × F ′
D(µ) | s′ = −t log x′, x′ > 0, t > 0

}
, (2)

where log(x′) denotes the vector of Rn+1 whose i-th component is log x′
i . Then for

(x′, y′, s′) ∈ Ct one has that

1 =
n+1∑
i=1

x′
i =

[
n+1∑
i=1

exp
(
t−1(AT

i y
′
[m] − ci)

)]
exp (t−1y′

m+1),

where An+1 ≡ −b and cn+1 ≡ −µ. Therefore,

−y′
m+1 = t log

[
n+1∑
i=1

exp
(
t−1(AT

i y
′
[m] − ci)

)]
, (3)

and the term on the right-hand side in the above equality is just the log-exponential
(log-exp for short) function of

F(y′
[m], µ) ≡

[
AT y′

[m] − c

µ− bT y′
[m]

]
.

As t ↓ 0 the log-exp function uniformly approaches the vector-max function,
namely

0 � logexp(z) − vecmax(z) � t log n,

where

logexp(z) = log

[
n∑

i=1

exp(zi)

]
, vecmax(z) = max{z1, . . . , zn}

for z ∈ Rn (see 1.30 of Rockafellar and Wets (1998)). Thus, the points on Ct can
be interpreted as approximate optimal solutions of ALD(µ) according to (1).

In this paper we study the solution trajectory Ct . The theory of this solution tra-
jectory is established based on the properties of log-exp function, which were stud-
ied by many authors, see Rockafellar and Wets (1998), Templeman and Li (1987),
Li (1991, 1992), and Peng and Lin (1999). Also, Chen and Mangasarian (1996)
used the recession function of log exp(z) when z ∈ R2 to solve complementarity
problems.

In Section 2 we study the new solution trajectory and neighborhoods of the
trajectory. In Section 3 we give an unconstrained approach to find a point on
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the solution trajectory. The results obtained are connected to Fang (1992). Some
concluding remarks are made in Section 4.

2. The solution trajectory

Let

�(y′
[m], µ) ≡ vec max[F(y′

[m], µ)] = vec max

[
AT y′[m] − c

µ − bT y′
[m]

]
, (4)

and

�t(y
′
[m], µ) ≡

t log


 n∑

j=1

exp
(
t−1(AT

j y
′
[m] − cj )

) + exp
(
t−1(µ− bT y′

[m])
) . (5)

Then �t(y
′
[m], µ) approximates �(y′

[m], µ) by the following inequalities

�t(y
′
[m], µ) − t log(n + 1) � �(y′

[m], µ) < �t(y
′
[m], µ). (6)

REMARK 1. Note that both � and �t are convex functions and for any β the level
set of �t defined by {y′

[m] | �t(y
′
[m], µ) � β} is contained in the corresponding

level set of � due to (6). Form the blanket assumption we know that one of the
level sets of � is bounded, hence one of the level sets of �t is also bounded, which
is equivalent to that all of the level sets of �t are bounded by convex analysis.

Note that if (x′, y′, s′) ∈ Ct , then it follows from (6) that

−y′
m+1 > Fi(y

′
[m], µ), i = 1, . . . , n + 1,

and therefore,

s′
i = −Fi(y

′
[m], µ) − y′

m+1 > 0, i = 1, . . . , n + 1, (7)

i.e., (y′, s′) ∈ rintF ′
D(µ), where “rint" denotes the relative interior in the usual

sense of convex analysis. Thus, Ct could be expressed in the form

Ct ={(x′, y′, s′) | Ãx′ = 0, eT[n+1]x
′ = 1, log(x′) + t−1s′ = 0,

s′ = c̄(µ) − ĀT y′}.
where

Ã = (A,−b) and c̄(µ) = (cT ,−µ)T . (8)
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Later in (21) we will show that (x′, y′, z′) exists and is unique for any t > 0. In
the remainder of this section, we will prove that Ct is a solution trajectory in the
following sense

lim
t↓0

dist((x′(t), y′(t), s′(t)),F∗(µ)) = 0,

for (x′(t), y′(t), s′(t)) ∈ Ct . Our proof is based on minimizing �t(y
′
[m], µ).

It should be pointed out that �t(y
′
[m], µ) is continuously differentiable which over-

comes the nonsmoothness of �(y′
[m], µ). We introduce some notations as follows,

which will be used in the sequel:

ξ ′
i (y

′
[m], t) = exp

[
t−1

(
AT
i y

′
[m] − ci − �t(y

′
[m], µ)

)]
, i = 1, . . . , n,

ξ ′
n+1(y

′[m], t) = exp
[
t−1

(
µ − bT y′[m] − �t(y

′[m], µ)
)]
,

E(y′
[m], t) = diag1�i�n+1(ξ

′(y[m], t)),

H(y′
[m], t) = E(y′

[m], t) − E(y′
[m], t)e[n+1]eT[n+1]E(y

′
[m], t).

It is easy to verify the following properties:

(P1)
∑n+1

i=1 ξi(y
′[m], t) = 1;

(P2) E(y′[m], t) is positive definite;
(P3) H(y′

[m], t) = H(y′
[m], t)E(y

′
[m], t)

−1H(y′
[m], t);

(P4) Null(H(y′
[m], t))= Span (e[n+1]);

(P5) ∇(�t (y
′
[m], µ)) and ∇2(�t(y

′
[m], µ)) have following expressions

∇(�t (y
′
[m], µ)) =

n+1∑
j=1

ξ ′
j (y

′
[m], t)Aj

= ÃE(y′
[m], t)e[n+1],

(9)

and

∇2(�t (y
′
[m], µ))

= t−1




n+1∑
j=1

ξ ′
j (y

′
[m], t)AjA

T
j −


n+1∑

j=1

ξ ′
j (y

′
[m], t)Aj





n+1∑

j=1

ξ ′
j (y

′
[m], t)Aj




T 


= t−1
{
Ã(E(y′

[m], t) − E(y′
[m], t)e[n+1]eT[n+1]E(y

′
[m], t))[A,−b]T

}
= t−1[A,−b]H(y′

[m], t)Ã
T ,

where An+1 = −b.
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LEMMA 1. If A is of full row rank, then �t(y
′
[m], µ) is strictly convex in y′

[m].
Proof. From (P5) and (P3), we can write ∇2(�t(y

′
[m], µ)) as

∇2(�t (y
′
[m], µ)) = t−1ÃH(y′

[m], t)E(y
′
[m], t)

−1H(y′
[m], t)Ã

T , (10)

which implies that ∇2(�t(y
′
[m], µ)) is positive semi-definite. Now, we prove that it

is in fact a positive definite matrix. For

H(y′
[m], t)Ã

T z = 0,

it follows from (P4) that

ÃT z = (A,−b)T z ∈ Span{e[n+1]}.
If (A,−b)T z = λe[n+1] and λ �= 0, then F ′

P (µ) = ∅, which is a contradiction.
Therefore [A,−b]T z = 0, which implies z = 0 since A is of full row rank. Thus
the matrix

H(y′
[m], t)(A,−b)T = H(y′

[m], t)Ã
T

is of full column rank, ∇2(�t (y
′
[m], µ)) is positive definite, and �t(y

′
[m], µ) is

strictly convex in y′
[m]. �

Since �t(y
′[m], µ) is strictly convex in y′[m] and has bounded level sets, it has a

unique minimizer, denoted here by y′
[m](t, µ), namely

y′
[m](t, µ) ≡ argmin{�t(y

′
[m], µ) | y′

[m] ∈ Rm}.
For convenience, we denote ξ ′(t, µ) ≡ ξ ′(y′

[m](t, µ), t) Then

∇y ′[m]�t(y
′
[m](t, µ), µ) = 0,

or

n+1∑
j=1

ξ ′
j (t, µ)Aj = 0, (11)

namely

ÃE(y′
[m](t, µ), t)e[n+1] = 0. (12)

From (11) (or (12)), (P1) and the positiveness of ξ ′(t, µ), we obtain the following
important inclusion relationship

ξ ′(t, µ) ∈ rintF ′
P (µ). (13)

The following theorem shows that ξ ′(t, µ) is an approximate (interior) solution to
(ALP)(µ) and (y′(t, µ),−�t(y

′(t, µ), µ)) is an approximate (interior) solution to
(ALD)(µ).
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THEOREM 1. Let y′∗
m+1(µ) be the optimal value of (ALD)(µ). Then

(y′
[m](t, µ),−�t(y

′
[m](t, µ), µ)) ∈ rintF ′

D(µ), (14)

ξ ′(t, µ) ∈ rintF ′
P (µ), (15)

− t log(n+ 1) + cT ξ ′
[n](t, µ) − µξ ′

n+1(t, µ) � y′∗
m+1(µ) �

� cT ξ ′
[n](t, µ) − µξ ′

n+1(t, µ), (16)

and

−�t(y
′
[m](t, µ), µ) � y′∗

m+1(µ) � −�t(y
′
[m](t, µ), µ) + t log(n + 1). (17)

Proof. From the definition of ξ ′(t, µ), we have

t log(ξ ′
i (t, µ)) = AT

i y
′
[m](t, µ) − ci − �t(y

′
[m](t, µ), µ), i = 1, . . . , n,

t log(ξ ′
n+1(t, µ)) = µ − bT y′

[m](t, µ) − �t(y
′
[m](t, µ), µ),

or in a compact form

AT y′
[m](t, µ) − c − �t(y

′
[m](t, µ), µ)e[n] = t log(ξ ′

[n](t, µ)),

µ − bT y′
[m](t, µ) − �t(y

′
[m](t, µ), µ) = t log(ξ ′

n+1(t, µ)),
(18)

where log(ξ ′[n](t, µ)) ∈ Rn denotes the vector whose i-th component is ξ ′
i (t, µ) for

i = 1, . . . , n. In view of the definition of ξ ′(t, µ), one has that

AT y′
[m](t, µ) − �t(y

′
[m](t, µ), µ)e[n] < c,

−bT y′
[m](t, µ) − �t(y

′
[m](t, µ), µ) < −µ,

which implies the validity of (14). The inclusion (15) comes from (13). Expressions
in (18) may be re-written as

ÃT y′
[m](t, µ) − �t(y

′
[m](t, µ), µ)e[n+1] = c̄(µ) + t log(ξ ′(t, µ)).

Premultiplying the above equality by ξ ′(t, µ)T , we have

−�t(y
′
[m](t, µ), µ) = cT ξ ′

[n](t, µ) − µξ ′
n+1(t, µ) + tHn+1(ξ

′(t, µ)),

where

Hn+1(ξ
′(t, µ)) =

n+1∑
j=1

ξ ′
j (t, µ) log ξ ′

j (t, µ)

is the negative entropy with respect to ξ ′(t, µ). It is easy to verify that

min


Hn+1(ξ

′)
∣∣∣ n+1∑
j=1

ξ ′
j = 1, ξ ′ � 0


 = − log(n+ 1).
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Thus we have

−�t(y
′
[m](t, µ), µ) < cT ξ ′

[n](t, µ) − µξ ′
n+1(t, µ)

� −�t(y
′
[m](t, µ), µ) + t log(n + 1). (19)

Since (y′
[m](t, µ),−�t(y

′
[m](t, µ), µ)) ∈ rintF ′

D(µ) and ξ ′(t, µ) ∈ rintF ′
P (µ), it

follows from the duality theory of linear programming that

−�t(y
′
[m](t, µ), µ) � y′∗

m+1(µ) � cT ξ ′
[n](t, µ) − µξ ′

n+1(t, µ). (20)

Combining inequalities (19) and (20), we obtain inequalities (16) and (17). The
proof is completed. �
Since

log ξ ′
i (t, µ) = t−1{[AT

i y
′
[m](t, µ) − ci] − �t(y

′
[m](t, µ), µ)}

= −t−1(ci − AT
i y

′
[m](t, µ) − (−�t(y

′
[m](t, µ), µ))),

or

log ξ ′(t, µ) = −t−1(c̄(µ) − ÃT y′(t, µ)), y′(t, µ)
= (y′

[m](t, µ),−�t(y
′
[m](t, µ), µ)),

and

Ãξ ′(t, µ) = 0, eT[n+1]ξ
′(t, µ) = 1,

we obtain that

(ξ ′(t, µ), y′(t, µ), s′(t, µ)) ∈ Ct
with s′(t, µ) = c̄(µ) − ÃT y′(t, µ). Noting y′

[m](t, µ) is the unique minimizer of
�t(y[m], µ), we have that if a point (x′, y′, s′) ∈ Ct corresponding to t > 0, i.e., it
satisfies

Ãx′ = 0,
eT[n+1]x

′ = 1,
s′ = c̄(µ) − ÃT y′,
log x′ + t−1s′ = 0,

then it is just (x′(t, µ), y′(t, µ), s′(t, µ)). Based on this fact, Ct may also be ex-
pressed as

Ct = {(ξ ′(t, µ), (y′
[m](t, µ),−�t(y

′
[m](t, µ), µ)),−t log ξ ′(t, µ))

| y′
[m](t, µ) = argmin �t(y

′
[m], µ), t > 0}. (21)

To illustrate that Ct defined by (2) or (21) is actually a solution trajectory to (ALP)(µ)
and (ALD)(µ), we must show that the distance of ξ ′(t, µ) (y′(t, µ)) and the solu-
tion set of (ALP)(µ)((ALD)(µ)) tends to zero as t tends to zero.
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THEOREM 2. Let

(x′(t, µ), y′(t, µ), s′(t, µ)) ≡ (ξ ′(t, µ), (y′
[m](t, µ),−�t(y

′
[m](t, µ), µ))

and −t log ξ ′(t, µ)) ∈ Ct , t > 0. Then

lim
t↓0

dist(x′(t, µ),X′
µ) = 0, lim

t↓0
dist(y′(t, µ), Y ′

µ) = 0, (22)

where X′(µ) and Y ′(µ) are optimal solution sets of (ALP)(µ) and (ALD)(µ), re-
spectively.

Proof. Let

X′
µ(t) ≡ {x′ ∈ F ′

P (µ) | c̄(µ)x′ � −�t(y
′
[m](t, µ), µ) + t log(n + 1)}

and

Y ′
µ(t) ≡ {y′ | (y′, s′) ∈ F ′

D(µ), y
′
m+1 � −�t(y

′
[m](t, µ), µ)}.

In view of (16) and (17), we have X′
µ ⊂ X′

µ(t) and Y ′
µ ⊂ Y ′

µ(t). Noting that
�t(y

′
[m], µ) is monotonically increasing with respect to t > 0, we have that

�t(y
′
[m](t, µ), µ) � �t ′(y

′
[m](t

′, µ), µ)

when 0 < t ′ < t , and the limit limt↓0 �t(y
′[m](t, µ), µ) exists and its value is just

y′∗
m+1, namely the optimal value of (ALP)(µ) or (ALD)(µ). It may be verified that

lim
t↓0

dH(X
′
µ(t),X

′
µ) = 0, lim

t↓0
dH(Y

′
µ(t), Y

′
µ) = 0, (23)

where dH(·, ·) denotes the Hausdorff distance. For instance, we demonstrate the
first equality as follows. It is obvious that

X′
µ ⊂

⋂
t>0

X′
µ(t)(≡ X̂µ),

so we only need to prove the opposite inclusion. Let x′ ∈ X̂µ then x′ ∈ F ′
P (µ) and

c̄(µ)T x′ � −�t(y
′
[m](t, µ), µ) + t log(n + 1),∀ t > 0.

Taking t ↓ 0 in the above inequality, we obtain

c̄(µ)T x′ � y′∗
m+1,

which means that x′ ∈ X′
µ from the duality theory. From Aubin and Frankowska

(1990), we have limt↓0 X
′
µ(t) = X̂µ and limt↓0 dH(X

′
µ(t),X

′
µ) = 0. We can prove

limt↓0 dH(Y ′
µ(t), Y

′
µ) = 0 in the same way.
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It follows from (16) and (17) that (x′(t, µ), y′(t, µ)) ∈ X′
µ(t)×Y ′

µ(t). Noticing
that

dist(x′(t, µ),X′
µ) � dist(x′(t, µ),X′

µ(t)) + dH(X
′
µ(t),X

′
µ) = dH(X

′
µ(t),X

′
µ)

and

dist(y′(t, µ), Y ′
µ) � dist(Y ′(t, µ), Y ′

µ(t)) + dH(Y
′
µ(t), Y

′
µ) = dH(Y

′
µ(t), Y

′
µ),

we obtain (16) from (17) directly. The proof is completed. �
From Theorem 2, if (x̃′

µ, ỹ
′
µ) is a cluster point of (x′(t, µ), y′(t, µ)) defined by

Theorem 2, {tk} ⊂ R+ satisfies tk ↓ 0 and

x̃′
µ = lim

k→∞
x′(tk, µ), ỹ′

µ = lim
k→∞

y′(tk, µ),

then (x̃′
µ, ỹ

′
µ) ∈ X′

µ × Y ′
µ. Let

s̃′
µ ≡

[
c

−µ

]
−

[
AT

−bT

]
(ỹ′

µ)[m] − (ỹ′
µ)m+1e[n+1].

Then

s̃′
µ � 0, (s̃′

µ)i(x̃
′
µ)i = 0 for i = 1, . . . , n + 1.

Since

x′
i (tk, µ) = exp(−t−1

k s′
i (tk, µ),

s′
i (tk, µ) = ci − AT

i y
′
[m](tk, µ) + �tk(y

′
[m](tk, µ), µ),

where cn+1 ≡ −µ and An+1 ≡ −b, we have that if (x̃′
µ)i > 0, then

s′
i (tk, µ) = O(tk) (as tk ↓ 0)

and if (x̃′
µ)i = 0 and (s̃′

µ)i � 0, then

tk

s′
i (tk, µ)

−→ 0 (as tk ↓ 0).

COROLLARY 1. The set Ct defined by (2) is a solution trajectory to (ALP)(µ)
and (ALD)(µ) in the sense

dist[Ct ,F∗
µ] −→ 0 as t ↓ 0.

3. An unconstrained approach for solving (ALP)(µ)

In this section, we propose an unconstrained approach for solving (ALP)(µ), which
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is a damped Newton method for minimizing �t(y
′
[m], µ). From Section 2, we know

that ξ ′(t, µ) ≡ ξ ′(y′
[m](t, µ), t) satisfies that

(ξ ′(t, µ), (y′
[m](t, µ),−�t(y

′
[m](t, µ), µ)),−t log ξ ′(t, µ)) ∈ Ct , t > 0,

where y′
[m](t, µ) is the unique solution to

min �t(y
′
[m], µ). (24)

Our algorithm is based on solving (24), which could be used to obtain a point on
Ct . Hence if t is small, the algorithm actually finds an approximation solution to
ALP(µ) and ALD(µ).
Let

W(y′
[m], t) = ÃE(y′

[m], t)ÃT ,

p(y′
[m], t) = W(y′

[m], t)−1Ãξ ′(y′
[m], t),

η(y′
[m], t) = (Ãξ ′(y′

[m], t))T p(y
′
[m], t).

Then

∇2
y ′[m]

�t(y
′
[m], t) = 1

t

[
W(y′

[m], t) − Ãξ ′(y′
[m], t)(Ãξ

′(y′
[m], t))

T
]

and

[
∇2
y ′[m]

�t(y
′
[m], t)

]−1 = t

[
W(y′

[m], t)
−1 + p(y′[m], t)p(y′[m], t)T

1 − η(y′[m], t)

]
.

The Newton direction dN(y′
[m], t) of �t(y

′
m], µ) at y′

[m] is

dN(y′
[m], t) = −

[
∇2
y ′[m]

�t(y
′
[m], t)

]−1 ∇y ′[m]�t(y
′
[m], t)

= −
[
∇2
y ′[m]

�t(y
′
[m], t)

]−1
Ãξ ′(y′

[m], t)

= −t
[
1 + η(y′

[m], t)/
(
1 − η(y′

[m], t)
)]
p(y′

[m], t)
= [−t/

(
1 − η(y′

[m], t)
)]
p(y′

[m], t),

which is a vector parallel to −p(y′[m], t). For simplicity, we just take −p(y′[m], t) as
the search direction at y′

[m], i.e.,

d(y′
[m], t) = −p(y′

[m], t). (25)

Obviously, we have

∇y ′[m]�t(y
′
[m], µ)

T d(y′
[m], t) = −η(y′

[m], t),
∇y ′[m]�t(y

′
[m], µ)T dN(y

′
[m], t) = −tη(y′

[m], t)/(1 − η(y′
[m], t)).
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LEMMA 2. The vector y′
[m] is the minimizer of�t(y

′
[m], µ) if and only if η(y′

[m], t) =
0.

Proof. y′
[m] is the minimizer of �t(y

′
[m], µ) if and only if ∇y ′[m]�t(y

′
[m], t) =

Ãξ ′(y′
[m], t) = 0, which is equivalent to η(y′

[m], t) = 0 because of the positive
definiteness of E(y′

[m], t). �
Now we are ready to state our algorithm.

ALGORITHM 1.
Step 1. Select an initial point y′0[m] ∈ Rm and parameters ρ ∈ (0, 1/2) and β ∈

(0, 1). Set k := 0.
Step 2. If ‖Ãξ ′(y′k

[m], t)‖ = 0, then stop. Otherwise, go to Step 3.
Step 3. Compute

dk = −p(y′k
[m], t).

Step 4. Let l be the smallest nonnegative integer such that

�t(y
′
[m] + βldk, µ) − �t(y

′k
[m], µ) � −βlρη(y′k

[m], t)

and set y′k+1
[m] := y′k

[m] + αkd
k, where αk := βl . Return to Step 2 with k

replaced by k + 1.

THEOREM 3. The sequence {y′k
[m]} generated by Algorithm 1 converges to the

solution to (24).
Proof. Since {y′k

[m]} ⊂ L(y′0[m]), we have from Remark 1 that {y′k
[m]} is bounded.

Let y′∗[m] be any accumulation point of {y′k
[m]}, we prove that y′∗[m] is just the unique

solution to (24). Suppose that this is not true, then

∇y ′[m]�t(y
′∗
[m], µ) �= 0, d∗ ≡ −p(y′∗

[m], t) �= 0,
∇y ′[m]�t(y

′∗
[m], µ)T d∗ = −η(y′∗

[m], t) < 0.
(26)

Since

�t(y
′k
[m] + αkd

k) − �t(y
′k
[m]) � −αkρη(y

′k
[m], t),

we obtain that {αkη(y′k
[m], t)} converges to 0. In order to prove η(y′k

[m], t) −→
0, we show that {αk} is bounded away from 0. Now suppose that there exists a
subsequence of {αk}, say {αki }, tending to 0. By the line search rule, we have

�t(y
′ki [m] + β−1αki d

ki ) − �t(y
′ki [m])

β−1αki
> −ρη(y′ki [m], t). (27)

Since αki → 0, taking the limit of both sides of (26) yields

∇y ′[m]�t(y
′∗
[m], µ)

T d∗ � −ρη(y′∗
[m], t),
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i.e.,

−(1 − ρ)η(y′∗
[m], t) � 0.

Since ρ ∈ (0, 1/2), the above inequality implies −η(y′∗
[m], t) � 0, which contra-

dicts with (26). Thus {αk} is bounded away from 0 and {η(y′k[m], t)} converges to
0. That is

lim
k→∞

−∇y ′[m]�t(y
′k[m], µ)T dk = −∇y ′[m]�t(y

′∗
[m], µ)

T d∗ = η(y′∗
[m], t) = 0.

Thus, we have from Lemma 2 that y′∗
[m] is the unique solution to (24). Since every

accumulation point of {y′k
[m]} is the unique solution to (24) and {y′k

[m]} is bounded,
we have that {y′k

[m]} converges to the solution to (24). The proof is completed. �
Algorithm 1 is a simplified version of the Newton method for solving (24). In order
to prove superlinear convergence rate, we slightly sharpen the algorithm.

A REVISED VERSION OF ALGORITHM 1 — ALGORITHM 2

Step 1. Select an initial point y′0[m] ∈ Rm and parameters ρ ∈ (0, 1/2) and β ∈
(0, 1). Set k := 0.

Step 2. If ‖Ãξ ′(y′k
[m], t)‖ = 0, then stop. Otherwise, go to Step 3.

Step 3. Compute

dkN = −tp(y′k
[m], t)/(1 − η(y′k

[m], t)).

Step 4. Let l be the smallest nonnegative integer such that

�t(y
′
[m]+βldkN, µ)−�t(y

′k
[m], µ)�−βlρtη(y′k

[m], t)/(1−η(y′k
[m], t))

and set y′k+1
[m] := y′k

[m] + αkd
k, where αk := βl . Return to Step 2 with k

replaced by k + 1.

COROLLARY 2. The sequence {y′k
[m]} generated by Algorithm 2 converges to the

solution to (24).
Proof. Similar to the proof of Theorem 3. �

LEMMA 3. For all k sufficiently large, the stepsize αk = 1 is chosen in Step 4 of
Algorithm 2.

Proof. Since {y′k
[m]} converges to the solution to (24), one has that for k suffi-

ciently large,

�t(y
′k
[m] + αkd

k
N, µ) = �t(y

′k
[m], µ) + αk∇y ′[m]�t(y

′k
[m], µ)T d

k
N+

+(α2
k/2)dkTN ∇2

y ′[m]
�t(y

′k
[m], µ)

T dkN + o(‖αkdkN‖2).
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It follows from the definition of dkN that

�t(y
′k
[m] + αkd

k
N, µ) = �t(y

′k
[m], µ) − tαkη(y

′k
[m], t)/(1 − η(y′k

[m], t))

+ tη(y′k
[m], t)α

2
k/2(1 − η(y′

[m], t)) + o(‖αkdkN‖2)

= �t(y
′k
[m], µ) − (αk − α2

k/2)tη(y′k
[m], t)/(1 − η(y′k

[m], t)) +
+ o(‖αkdkN‖2)

Since {y′k
[m]} −→ y′∗

[m], where y′∗
[m] is the solution to (24), there exists τ > 0 such

that

λmin[E(y′∗
[m], t)] � τ (28)

for k sufficiently large, where λmin stands for the smallest eigenvalue. Noting the
definition of dkN and (28), we obtain

‖dkN‖2 = (t2η(y′k
[m], t)

2/(1 − η(y′k
[m], t))

2)‖p(y′k
[m], t)‖2

= t2η(y′k
[m], t)

2∇�t(y
′k
[m], µ)

T E(y′k
[m], t)

−2∇�t(y
′k
[m], µ)/(1−η(y′k

[m], t))
2

= t2η(y′k
[m], t)

2∇�t(y
′k
[m], µ)

T E(y′k
[m], t)

−1/2E(y′k
[m], t)

−1 ×
× E(y′k

[m], t)
−1/2∇�t(y

′k
[m], µ)/(1 − η(y′k

[m], t))
2

� τ−1t2η(y′k
[m], t)

3/(1 − η(y′k
[m], t))

2.

For k sufficiently large, we have

1

2
− τ tη(y′k

[m], t)2

1 − η(y′k
[m], t)

� ρ. (29)

It follows from

�t(y
′k
[m] + αkd

k
N , µ) − �t(y

′k
[m], µ) �

�−[
αk−α2

k/2−α2
k τ tη(y

′k
[m], t)

2/(1−η(y′k
[m], t))

] [
tη(y′k

[m], t)/(1−η(y′k
[m], t))

]
that αk must be 1 because ρ ∈ (0, 1/2) and

1 − 1

2
− τ tη(y′k

[m], t)
2

1 − η(y′k
[m], t)

� ρ

holds for k sufficiently large. The proof is completed. �
THEOREM 4. The sequence {y′k

[m]} generated by Algorithm 2 converges to the
solution to (24) at a superlinear rate.
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Proof. From Lemma 3, we know that αk ≡ 1 for k sufficiently large and y′k+1
[m] =

y′k
[m] + dkN . Let y′∗

[m] be the solution to (24), then

‖y′k+1
[m] − y′∗

[m]‖ = ‖y′k
[m] − (∇2�t(y

′k
[m], µ))

−1∇�t(y
′k
[m], µ) − y′∗

[m]‖
= ∥∥(∇2�t(y

′k
[m], µ))

−1[∇�t(y
′∗
[m], µ) −

−∇�t(y
′k
[m], µ) + ∇2�t(y

′k
[m], µ)(y

′k
[m] − y′∗

[m])]
∥∥

=
∥∥∥(∇2�t(y

′k
[m], µ))

−1

(∫ 1

0
(∇2�t(y

′k
[m] + s(y′∗

[m] − y′k
[m]), µ)

−∇2�t(y
′k
[m], µ)

)
(y′∗

[m] − y′k
[m])ds

∥∥∥.
Since y′k

[m] −→ y′∗
[m], one has, for k sufficiently large, αk ≡ 1 and

‖(∇2�t(y
′k
[m], µ))

−1‖ � c,

for some positive constant c. Therefore,∥∥y′k+1
[m] − y′∗

[m]
∥∥ �

c

∥∥∥∥
∫ 1

0

[∇2�t

(
y′k

[m] + s(y′∗
[m] − y′k

[m]), µ
) − ∇2�t(y

′k
[m], µ)

]
ds

∥∥∥∥ ∥∥y′∗
[m] − y′k

[m]
∥∥ .

The superlinear convergence of {y′k
[m]} comes from the above inequality and the

continuity of ∇2�t(·, µ). The proof is completed. �

4. Concluding remarks

We define a new central path by a different perturbation on the right hand side term
of the complementarity equation in the KKT system of the Karmarkar form of
LP. Similar to the traditional central path, the new central path defines a trajectory
toward the solution of the Karmarkar form of LP as the parameter approaches zero.
A damped Newton method is shown to converge to any given point on this central
path at a superlinear rate; therefore provides a method for solving the LP problem
if the parameter is set small enough to a user-specified tolerance.

It is interesting to note that the points on the traditional central path are the
solutions to the log-barrier problem of the standard LP while the points on the
new central path can be interpreted as the solution to the log-exp problem of the
Karmarkar LP. By introducing self-concordance, Nesterov and Nemirovskii (1994)
show that Newton’s method can be used to efficiently “follow" the central path,
hence producing polynomial algorithms. This paper did not touch the topic of how
to follow the new central path but it is certainly a reasonable future step of research.
The proposed algorithm, on the other hand, is globally convergent to a point on the
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central path with arbitrarily small t , therefore it is more like a barrier method with a
pre-specified parameter. Another possible direction of research is to understand the
computational impact of such a central path. Since the log-exp function is a smooth
approximation of the vecmax function, it looks that the proposed method tends to
reduce the largest slack in the dual problem. Therefore the proposed method might
be quite robust for badly-scaled problems. However, no conclusion can be made
unless enough computational evidence is provided.
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